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Abstract

Current audio-driven facial animation methods achieve
impressive results for short videos but suffer from error ac-
cumulation and identity drift when extended to longer du-
rations. Existing methods attempt to mitigate this through
external spatial control, increasing long-term consistency
but compromising the naturalness of motion. We propose
KeyFace, a novel two-stage diffusion-based framework, to
address these issues. In the first stage, keyframes are gener-
ated at a low frame rate, conditioned on audio input and
an identity frame, to capture essential facial expressions
and movements over extended periods of time. In the sec-
ond stage, an interpolation model fills in the gaps between
keyframes, ensuring smooth transitions and temporal co-
herence. To further enhance realism, we incorporate con-
tinuous emotion representations and handle a wide range
of non-speech vocalizations (NSVs), such as laughter and
sighs. We also introduce two new evaluation metrics for
assessing lip synchronization and NSV generation. Experi-
mental results show that KeyFace outperforms state-of-the-
art methods in generating natural, coherent facial anima-
tions over extended durations, successfully encompassing
NSVs and continuous emotions.

1. Introduction
The field of audio-driven facial animation has advanced sig-
nificantly with the development of generative models like
Generative Adversarial Networks (GANs) [18] and Diffu-
sion Models (DMs) [13, 22]. These approaches have greatly
enhanced the realism and expressiveness of facial anima-
tions, enabling promising applications in virtual assistants,
education, virtual reality, and aiding communication im-
pairments [28, 34, 61]. As a result, the demand for high-
resolution, natural, long-term audio-driven facial anima-
tions has increased dramatically.

Stage 1: Keyframe generation

Stage 2: Interpolation

Generated video

Identity frame

Driving audio

Figure 1. KeyFace generates long-term videos using a two-stage
pipeline: first, keyframes are created as anchor points, then they
are used by an interpolation model to produce smooth transitions.

While early approaches in audio-driven facial animation
were limited in terms of head rotation [58] or focused solely
on generating the mouth region [46], current methods have
advanced to produce results that are nearly indistinguish-
able from real videos. Despite this progress, most methods
struggle when handling longer audio inputs, suffering from
identity drift and overall quality degradation beyond the ini-
tial few seconds [52, 65]. To extend generation length,
some approaches incorporate additional spatial information,
such as target head positions or landmarks, as model in-
puts [11, 56, 63]. While this can improve temporal consis-
tency, it constrains animations to predefined facial motions,
limiting expressiveness. Other methods use motion frames
to provide context on prior movements [52, 65], but, as with
many autoregressive approaches, small errors accumulate
over time, reducing overall quality.

Furthermore, recent methods often neglect important as-



pects of long-form natural speech, such as continuously
changing emotions and NSVs. Existing emotional audio-
driven methods often assume a fixed emotional state [17,
27, 55], which restricts them to short sequences and over-
looks real-world dynamics, where emotions fluctuate con-
tinuously. Moreover, they typically rely on discrete emotion
labels [17, 19], which lack the nuance and fluidity of natu-
ral human expressions [62]. In contrast, the less-explored
dimensions of valence and arousal provide a more precise
portrayal of emotional states [2, 62]. Similarly, NSVs such
as laughter and sighs are largely neglected, despite being es-
sential for natural communication [45, 48]. Crucially, han-
dling emotion and NSVs requires a model capable of inter-
preting them over extended sequences to accurately animate
the corresponding facial expressions.

To address these limitations, inspired by keyframe-based
approaches [67, 69] initially introduced by [43], we propose
KeyFace, a novel two-stage approach for generating long
and coherent audio-driven facial animations. In the first
stage, a keyframe generation model produces a sequence
at a low frame rate conditioned on an identity and audio in-
put, spanning multiple seconds and eliminating the need for
motion frames. In the second stage, an interpolation model
fills in intermediate frames, ensuring smooth transitions and
temporal coherence. By dividing generation into two parts,
we implicitly separate motion and identity control, result-
ing in more natural motion and improved identity preserva-
tion over time. For longer sequences, this process can be
repeated, with the interpolation model generating seamless
transitions between segments. In addition to generating re-
alistic, long-term animations, our pipeline allows for emo-
tions that evolve over time, leveraging the keyframe gener-
ation model’s broad contextual span.

Our main contributions can be summarized as follows:
• State-of-the-art long-term animation: We introduce a

state-of-the-art method that combines keyframe genera-
tion with interpolation to produce videos that maintain
high quality over time and capture long-range temporal
dependencies.

• Continuous emotion modelling: Using valence and
arousal, we enhance the emotional expressiveness of fa-
cial animations, allowing for nuanced portrayals of grad-
ual emotional transitions.

• Integration of non-speech vocalizations: We extend the
communicative capabilities of our model by incorporat-
ing NSVs for more natural animations.

2. Related Works
Audio-driven facial animation Audio-driven facial ani-
mation methods [30, 58, 75] generate realistic talking-head
sequences with audio-synchronized lip movements. Early
models, such as [58], used GANs, introducing a temporal
GAN to generate talking-head videos from a still image and

audio input, while Wav2Lip [46] improved lip-sync accu-
racy with a pre-trained expert discriminator. More recent
3D-aware and head pose-driven methods [7, 75, 77] aimed
to capture head motion, though often struggled with arte-
facts and unnatural movements.

In contrast to GANs, which face challenges like mode
collapse [1], DMs excel in conditional image and video
generation [47, 73] and are promising for facial anima-
tion [15, 66]. In [52], an autoregressive diffusion model
generate head motions and expressions from audio but
face challenges with long-term consistency. Recent meth-
ods [11, 59, 65] use video DMs [3, 23] for improved tem-
poral coherence. For instance, AniPortrait [63] conditions
on audio-predicted facial landmarks, but converting audio
to latent motion (e.g., landmarks [63] or 3D meshes [71])
remains challenging, often yielding synthetic-looking mo-
tion. Similarly, [66] proposes a two-stage approach that
disentangles motion and identity, but assumes strict sepa-
ration, which is not always respected. To preserve identity
across generated frames, several methods [11, 59, 63] lever-
age ReferenceNet [24], which provides identity informa-
tion, but increases resource demands. In contrast, KeyFace
addresses these limitations by combining keyframe pre-
diction and interpolation for temporally coherent, identity-
preserving animations without relying on intermediate rep-
resentations or ReferenceNet. Although similar approaches
have been applied to video generation [3, 51] and control-
lable animation [42], ours is the first to apply this method to
audio-driven animation.

Emotion-driven generation Controllable emotion has
recently become a key focus in audio-driven facial ani-
mation to create more realistic, empathetic avatars. Most
works [10, 17, 19, 38] use discrete emotion labels (e.g. an-
gry or sad) with intensity levels, but this approach lacks ex-
pressivity beyond predefined classes. Some approaches use
a driving video or audio as a richer emotional source [27,
36, 44, 49, 55], generating a latent representation from the
media to drive the animation. This latent representation
can sometimes be interpolated to control the resulting emo-
tion [26]. However, they require the driving audio or video
during inference, limiting expressiveness and restricting ex-
plicit control. Continuous emotion conditioning, using va-
lence and arousal, remains underexplored, despite evidence
that it better captures emotional complexity [2, 62]. Addi-
tionally, few works allow for continuous emotion variation
within a video, and those that do are often limited to a small
set of emotions [64], likely due to challenges in achieving
coherent long-term animation.

Non-speech vocalizations Non-speech vocalizations
(NSVs), such as laughter and sighs, significantly enhance
human communication [45, 48] by providing context



beyond words and increasing speech naturalness. Despite
this, NSVs are often overlooked in audio-driven facial
animation, and state-of-the-art models trained only on
speech typically perform poorly on NSVs. Recently, two
models have aimed to address this gap: Laughing Mat-
ters [5], which proposes a diffusion model that can produce
realistic laughter videos from still images and audio, and
LaughTalk [54], a 3D model that generates both speech and
laughter. However, a model capable of handling multiple
NSVs in addition to speech has not yet been explored.

3. Method
Our two-stage approach, outlined in Fig. 2, starts with the
generation of temporally distant keyframes. In the second
stage, an interpolation model animates the full sequence by
filling gaps between the generated keyframes. Our archi-
tecture builds upon Stable Video Diffusion (SVD) [3], with
further architectural details and key distinctions provided in
Appendix B.

3.1. Latent diffusion
Diffusion models [13, 22] are generative models structured
as Markov chains with a Gaussian kernel, consisting of
two main processes. The forward process gradually adds
noise to the initial data point, while the reverse process
denoises samples in multiple steps. Traditional diffusion
models require many sampling steps to achieve high-quality
images, which can be computationally demanding. The
EDM framework [31], which defines the diffusion process
as a stochastic differential equation and employs an Euler
solver for denoising, reduces the necessary diffusion steps
by parametrising the learnable denoiser Dθ as

Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x; cnoise(σ)), (1)

where Fθ is the network to be trained, x is the model input,
and cnoise, cout, cskip, and cin are scaling factors that depend
on the noise level σ. Latent Diffusion Models (LDMs) [47]
further reduce computational demands by integrating a pre-
trained Variational Autoencoder (VAE) [35]. Rather than
operating in the original high-dimensional space, LDMs
map data into a compact latent space via an encoder, where
diffusion is applied more efficiently. The latent samples are
subsequently decoded back to the original space.

3.2. Keyframe generation
In the first stage, we generate keyframes that capture essen-
tial facial expressions and movements, guided by the audio
over an extended temporal context. These keyframes act as
anchor points for the subsequent interpolation stage, ensur-
ing that the final animation accurately reflects both the au-
dio content and the associated emotional expressions. We

generate T keyframes, spaced S frames apart, to capture
long-range temporal dependencies efficiently.

Given a noised input sequence zk ∈ RC×T×H×W ,
where C is the number of channels, and H × W are the
spatial dimensions, our goal is to generate a sequence of a
person speaking in sync with the given audio. To provide
identity and background information, we repeat an identity
frame xid ∈ RC×H×W , pass it through the VAE encoder,
and concatenate it with the noised input, effectively lever-
aging the U-Net architecture’s skip connections to preserve
input details. Additionally, the model is conditioned on au-
dio embeddings (see Section 3.4), along with emotional va-
lence and arousal (see Section 3.5).

3.3. Interpolation
After generating the main frames that capture essential fa-
cial expressions and movements, the next step is to inter-
polate between these keyframes to produce a smooth and
coherent video sequence.

We use the same architecture as the keyframe model,
adapted for the interpolation task. We take two consecutive
frames zs and ze from the keyframe sequence as condition-
ing frames. To match the input shape zi ∈ RC×S×H×W ,
we create a sequence

s = {zs, zm, . . . , zm︸ ︷︷ ︸
repeat S−2 times

, ze} ∈ RC×S×H×W ,

where zm ∈ RC×H×W is a learned embedding that rep-
resents the missing frames. This sequence is concatenated
channel-wise with the noise input. We also incorporate a
binary mask M ∈ RS×1×H×W , where Ms = 1 if s cor-
responds to a conditioning frame (s = 1 or s = T ), and
Ms = 0 otherwise. This mask helps the model distinguish
between conditioned and unconditioned frames, allowing it
to focus on interpolating the intermediate frames.

3.4. Audio encoding
For audio processing, we combine embeddings from two
pre-trained audio encoders: WavLM Aw ∈ RL×Ca

[8],
which excels at capturing linguistic content from speech,
and BEATs Ab ∈ RL×Ca

[9], which is trained to extract
features from a broader range of acoustic signals, includ-
ing non-speech sounds. We define L ∈ {T, S} based on
whether we use the interpolation or keyframe model and
Ca as the audio embedding dimension. By concatenating
these embeddings, we obtain Awb = Concat(Aw, Ab) ∈
RL×2Ca

, which we feed to the model via two mechanisms:
• Audio Attention Blocks: The combined embeddings

serve as keys and values in the cross-attention layers
within the U-Net, enabling the model to attend to relevant
audio features.

• Timestep Embeddings: We pass Awb through an MLP
and add it to the diffusion timestep embeddings ts ∈ RCs

,
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Figure 2. Overview of KeyFace’s two-stage framework. The main architecture (a) is shared between the two stages, differing only in the
conditioning inputs. A detailed view is provided in (b). In the keyframe generation stage, the model receives an identity frame xid, repeated
and concatenated with the noised video input to match the input dimensions. In the interpolation stage, the model is conditioned on two
consecutive frames zs and ze from the keyframe sequence, interpolating the intermediate frames using a learned masked embedding zm
and a binary mask M . Both stages incorporate audio embeddings Awb from WavLM and BEATs (c). We also use continuous emotion
embeddings in the keyframe generation to produce facial animations that accurately convey both speech content and emotional expressions.

yielding t′s = ts + MLP(Awb), where Cs is the timestep
embedding dimension. This encourages alignment be-
tween image and audio frames.

3.5. Emotion modelling with valence and arousal
To capture complex, continuously changing emotional ex-
pressions, we adopt a continuous representation based on
valence and arousal. For each frame, we extract valence and
arousal using a pre-trained emotion recognition model [50],
encode them into sinusoidal embeddings Ev, Ea ∈ RCs

,
and add them to the diffusion timestep embedding along
with the audio embeddings:

t′′s = t′s + Ev + Ea. (2)

Notably, we find that incorporating emotions solely in
the keyframe model is sufficient for achieving effective
emotional control, as the interpolation model can propa-
gate emotional expressions without additional conditioning.
During inference, users can provide any valence and arousal
to guide the generation of desired emotional states.

3.6. Losses
Working in latent space is computationally efficient, but due
to the compressed representations, it can be challenging for
the model to retain fine semantic details from the original
image [72]. This issue is particularly critical for faces, as
humans are highly sensitive to minor imperfections in fa-
cial features, which can disrupt the perceived realism and
emotional expressiveness of animations. To mitigate this,
we decode the latent sequence z0 back to RGB space to ob-

tain x0 ∈ R3×L×H×W . We then apply an L2 loss between
the decoded frames x0 and the ground truth frames xgt, and
add it to the existing L2 loss between the latent representa-
tions z0 and zgt. We also include a perceptual loss Lp based
on features extracted from a pre-trained VGG network [29],
which encourages the generated images to be perceptually
similar to the ground truth, enhancing visual quality.

To reduce memory consumption, we apply the additional
pixel losses to a single random frame rather than the en-
tire sequence, which proves sufficient for producing high-
quality results. In contrast, the standard diffusion loss con-
tinues to be applied across all frames. Moreover, we intro-
duce a specialized weight λlower applied to the lower half of
the image, which helps the model focus on the mouth re-
gion. This spatially targeted weight, within the compressed
latent space, enhances lip synchronization quality by em-
phasizing the alignment between generated lip movements
and audio inputs, which is crucial for realistic audio-driven
animations. The total loss function is defined as

L = λtot (L2(z0, zgt) + L2(x0, xgt) + Lp(x0, xgt)) , (3)

where λtot = λ(t)λlower and λ(t) is a weighting factor that
depends on the diffusion timestep t, as defined in [31].

3.7. Guidance
For the keyframe model, we use a modified version of
classifier-free guidance (CFG) [21], split into two parts: one
for audio control and the other for identity control, allowing
separate scales for each. The guidance formula is

z = z∅ + wid · (zid − z∅) + waud · (zid & aud − zid), (4)



where waud and wid are the guidance scales for audio and
identity, respectively. Here, z∅ is the model output with all
conditions set to 0, zid is the output with only the identity
condition, and zid & aud is the output with both conditions.

While CFG is effective in many scenarios, it can overly
amplify the conditioning signal, reducing output diver-
sity [32]. In the interpolation stage, where subtle emotional
expressions and fluid motion are critical, CFG may be ill-
suited. Autoguidance [32], addresses this by using a model
that is either smaller or trained with fewer steps to guide the
main diffusion process, balancing guidance for improved
video quality without sacrificing diversity. Autoguidance is
formulated as

D(x;σ, c) = Dr(.) + wauto · (Dm(.)−Dr(.)) , (5)

where D(x;σ, c) is the guided denoising step, Dr(.) is the
reduced model, Dm(.) is the fully trained guiding model,
and wauto controls the guiding model’s influence.

4. Experiments
4.1. Datasets
We train both models on HDTF [76] and a dataset that we
collected, comprising 160 hours of speech and 30 hours
of NSVs. We also experiment with CelebV-Text [70] and
CelebV-HQ [78] but find that excluding these lower-quality
datasets benefits training. For testing, we use the HDTF test
set, and 100 videos randomly selected from CelebV-Text.
Additionally, to evaluate our emotion control, we use a test
set selected from MEAD [60], as in [55].

4.2. Evaluation metrics
We evaluate image quality using the aesthetic quality
metric from VBench [25], Fréchet Inception Distance
(FID) [20], and Learned Perceptual Image Patch Similar-
ity (LPIPS) [74]. For general video quality, we use Fréchet
Video Distance (FVD) [57] and the smoothness metric from
[25]. We compute the emotion accuracy (Emoacc) using
the pre-trained emotion recognition model from [50]. We
also introduce two new metrics, further details are provided
in Appendix D.

LipScore. The typical metric for audio-visual synchro-
nization, SyncNet [46], has known limitations, including
low correlation with lip-sync quality and significant reliabil-
ity issues even on ground truth data [14, 19, 68]. To address
this, we introduce a lipreading perceptual score (LipScore)
inspired by [6], which computes the cosine similarity be-
tween the generated and ground truth embeddings extracted
from the final layer of a state-of-the-art lipreader [41]. This
lipreader is trained on 6× more data than SyncNet, pro-
viding higher-quality embeddings that better correlate with
human perception.

NSV accuracy. To evaluate the model’s ability to gener-
ate NSVs, we train a video classifier to recognize 8 NSV
types (”Mhm”, ”Oh”, ”Ah”, coughs, sighs, yawns, throat
clears, and laughter) plus speech, for a total of 9 classes.
The classifier is based on a pre-trained MViTv2 [37] for
video classification on the Kinetics dataset [33]. We then
employ it to evaluate the model’s ability to generate the cor-
rect NSV type and measure the overall accuracy, denoting
this metric as NSV accuracy (NSVacc).

4.3. User study
To provide a more comprehensive evaluation, we conduct a
user study inspired by [12]. We select 20 videos per model
(see Table 1) and present participants with pairs of 5-second
videos featuring the same audio and identity, asking them to
choose the more realistic video based on visual quality, lip
synchronization, and motion realism. We surveyed 51 par-
ticipants, each of whom compared an average of 20 video
pairs. We use an Elo rating system [16] with bootstrapping
applied to obtain a more stable ranking [12].

5. Results

This section presents a comprehensive evaluation of our
model, including comparisons with established methods
and ablation studies to assess the impact of key components.

5.1. Quantitative analysis
We present a quantitative comparison against current state-
of-the-art methods in Table 1. KeyFace achieves the low-
est FID and FVD, indicating higher realism and tempo-
ral coherence. Our model also achieves the highest AQ
and LPIPS, confirming the visual appeal of our anima-
tions. While SadTalker and V-Express achieve the high-
est smoothness and LipScores, respectively, KeyFace ranks
a close second and outperforms both SadTalker and V-
Express on the other metrics, demonstrating better perfor-
mance overall. Figure 3 illustrates FID over time for videos
generated by each method, where our two-stage approach
maintains consistent quality without degradation. In con-
trast, Hallo and AniPortrait suffer from significant quality
loss over time. To ensure fairness in evaluation, we also re-
port results for a variant of our model trained exclusively on
HDTF in Appendix F.

Additionally, the user study results (Elo) show that our
model is preferred over other methods, confirming the ef-
fectiveness of our approach. A detailed analysis of the re-
sults is provided in Appendix E.

5.2. Emotional results
To assess our model’s ability to generate accurate emotional
expressions, we evaluate it on MEAD [60], comparing it to
state-of-the-art models in Table 2.



Method AQ ↑ FID ↓ LPIPS ↓ FVD ↓ Smoothness ↑ LipScore ↑ Elo ↑

H
D

T
F

SadTalker [75] 0.52 60.55 0.44 410.86 0.9955 0.24 960.44
Hallo [65] 0.55 19.22 0.17 236.97 0.9939 0.27 1054.69
V-Express [59] 0.55 34.68 0.21 200.67 0.9943 0.37 985.35
AniPortrait [63] 0.56 20.68 0.19 299.09 0.9951 0.14 887.84
EchoMimic [11] 0.55 20.35 0.18 213.30 0.9928 0.17 1023.53
KeyFace 0.59 16.76 0.16 137.25 0.9952 0.36 1091.52

C
el

eb
V

-T
ex

t SadTalker [75] 0.49 49.85 0.49 434.31 0.9959 0.25 950.56
Hallo [65] 0.50 24.86 0.27 310.00 0.9938 0.29 1020.27
V-Express [59] 0.51 26.46 0.22 253.16 0.9933 0.32 1044.43
AniPortrait [63] 0.52 24.84 0.28 373.32 0.9950 0.12 841.79
EchoMimic [11] 0.51 22.81 0.26 298.33 0.9921 0.18 1043.26
KeyFace 0.55 17.06 0.21 180.26 0.9952 0.30 1100.90

Table 1. Quantitative comparisons on HDTF [76] and CelebV-Text [70] between our model and state-of-the-art facial animation methods.
The best results are highlighted in bold, and the second-best results are underlined. All the metrics are described in Section 4.2
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Figure 3. We present sliding window FID with a 1-second window
size for videos generated by different methods.

Notably, despite being trained with only pseudo-labels
extracted from our training data, KeyFace achieves compet-
itive emotion accuracy compared to other models, which are
trained on ground-truth labels from MEAD, outperforming
2 out of 3 models while delivering significantly better im-
age and video quality. We also show that using continu-
ous emotion labels (valence and arousal) yields significant
improvements compared to discrete labels, and allows our
model to generate multiple emotions within a single video
by interpolating between points in the valence and arousal
space, as illustrated in Figure 4.

5.3. Ablation Studies

Audio Encoder. We evaluate the impact of different audio
encoders on the model’s ability to handle both speech and
non-speech vocalizations (NSVs). As shown in Table 3, the
combination of WavLM and BEATs achieves the best over-

Method Emotion Source FID ↓ FVD ↓ Emoacc ↑
EDTalk [55] Video 101.19 619.90 0.72
EAT [17] Discrete Labels 75.69 560.61 0.54
EAMM [27] Video 107.16 855.20 0.17
KeyFace Discrete Labels 50.34 509.13 0.43
KeyFace Valence & arousal 44.43 447.74 0.67

Table 2. Emotion evaluation on MEAD [60]. Default settings are
highlighted in gray on all tables.
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Figure 4. We show KeyFace’s ability to interpolate between sev-
eral different emotions within the same video.

all performance. BEATs is shown to significantly improve
the handling of NSV, aligning with the findings of [5]. Like-
wise, when it is removed, the ability to generate the cor-
rect NSVs becomes close to random probability. Finally,
WavLM improves lip synchronization quality compared to
Wav2Vec2, with only a slight sacrifice in image quality, as
indicated by a marginal increase in FID.

Architecture. We assess two key architectural modifica-
tions in Table 4. First, we examine the effect of remov-
ing temporal layers for keyframe generation, which leads



Audio backbone FID ↓ FVD ↓ LipScore ↑ NSVacc ↑
WavLM 16.89 147.12 0.36 0.10
BEATs 19.52 212.47 0.29 0.23
Wav2vec2 + BEATs 16.00 143.97 0.32 0.31
WavLM + BEATs 16.76 137.25 0.36 0.42

Table 3. Audio encoder ablation on HDTF [76]. For NSVacc,
we use HDTF identities with audio containing NSVs.

to overly static frames, highlighting the importance of gen-
erating keyframes as a cohesive sequence. Second, we re-
place the concatenation operation with ReferenceNet, in-
spired by recent trends from [24], and find that it requires
twice as many training steps to achieve acceptable results.
Even then, it results in lower video quality, introducing in-
consistencies in background continuity and face shape.

Method FID ↓ FVD ↓ LipScore ↑
w/o temporal layers 23.74 250.30 0.25
w/o Concat, w/ Reference Net 39.71 401.70 0.32
Concat w/ temporal layers 16.76 137.25 0.36

Table 4. Architecture ablation on HDTF [76].

Losses. We compare the effects of different pixel loss
functions and weights in Table 5. First, we see that hav-
ing a pixel-space loss proves to be beneficial regardless of
the loss type. The L1 loss yields improved image quality
and lip synchronisation, but restricts model flexibility com-
pared to the L2 loss, resulting in a higher FVD. In addition,
incorporating the Lp loss noticeably improves visual qual-
ity for both losses, as shown by the decreased FID. Overall,
combining L2 and Lp losses produces the best balance of
quality, variety, and lip synchronisation. Next, we examine
λlower, which controls the weight of the pixel loss for the
lower part of the video. Choosing a higher weight improves
animation quality and lip synchronization, but increasing it
too much overemphasizes this region and reduces overall
quality. A good balance is achieved with λlower = 3.

Data. We test the effect of adding additional training
data to each stage in Table 6. Both models experience a
decline in performance when trained with data of lower
quality, confirming our hypothesis from Section 4.1. We
find that training exclusively on high-quality data primarily
improves lip synchronization for the interpolation model,
while conversely enhancing video quality for the keyframe
model, as indicated by lower FID and FVD scores, respec-
tively. This suggests that each model plays a distinct role
in the generation process and therefore reacts differently to
changes in training data.

Method FID ↓ FVD ↓ LipScore ↑
No pixel loss 18.76 148.22 0.33
L1 only 17.66 172.01 0.37
L2 only 19.00 137.54 0.34
L1 + Lp 17.02 169.01 0.34
L2 + Lp 16.76 137.25 0.36

λlower = 1 17.40 186.87 0.33
λlower = 2 16.71 147.01 0.35
λlower = 3 16.76 137.25 0.36
λlower = 4 17.36 161.40 0.35

Table 5. Loss ablation on HDTF [76].

Training set FID ↓ FVD ↓ LipScore ↑
Keyframe Interpolation

All All 26.92 253.24 0.24
All HQ only 24.45 236.75 0.31

HQ only All 16.97 166.81 0.24
HQ only HQ only 16.76 137.25 0.36

Table 6. Data Ablation on HDTF [76]. “HQ only” refers to our
high quality training set (HDTF and collected data), while “All”
refers to all training data, including CelebV-Text and CelebV-HQ.

Guidance. We compare different guidance types in Ta-
ble 7. Using CFG for both models makes videos overly
static, as it closely adheres to the keyframes, limiting ex-
pression range and animation flow, as shown by the lower
FVD. In contrast, applying autoguidance to the keyframe
model worsens alignment with audio, resulting in lower
LipScores. Using CFG instead allows for a separate grid
searches for audio and identity guidance scales (Fig. 5), in-
creasing flexibility and enhancing model performance.

Guidance method FID ↓ FVD ↓ LipScore ↑
Keyframe Interpolation

Autoguidance [32] CFG [21] 20.12 172.31 0.31
Autoguidance [32] Autoguidance [32] 18.86 152.77 0.33

CFG [21] CFG [21] 18.53 177.09 0.32
CFG [21] Autoguidance [32] 16.76 137.25 0.36

Table 7. Guidance Ablation on HDTF [76].

5.4. Qualitative analysis
Motion. We compare the motion generated by KeyFace to
that of other existing models by analysing the average opti-
cal flow magnitude in the predicted videos in Fig. 6. Ani-
Portrait and V-Express are excluded from this analysis, as
they are conditioned on the ground-truth motion and there-
fore are not suitable for a fair comparison. We see that mod-
els like Hallo and EchoMimic, which rely on ReferenceNet,
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Figure 5. We show the impact of guidance scale for identity and
audio condition on FID and LipScore on HDTF [76].

tend to produce background inconsistencies over time, as
shown by the noisy patterns surrounding the speaker’s sil-
houette, while SadTalker generates relatively static videos
of lower quality, as indicated by a sparser optical flow map.
In contrast, we find that KeyFace generates motion patterns
that more closely align with those observed in real videos,
outperforming other methods.
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Figure 6. We show the average optical flow magnitude accross
different speakers and models.

Visual Quality. Figure 8 compares our model with
other methods on the same audio input using an out-of-
distribution identity frame, revealing key limitations in ex-
isting approaches. AniPortrait and SadTalker exhibit repet-
itive movements, V-Express treats hair accessories as back-
ground, causing unnatural head movements around the
accessory, and EchoMimic introduces inconsistent head
movements and background artifacts across frames. Hallo,
on the other hand, produces natural motion, but suffers from
error accumulation. Finally, KeyFace produces natural and
varied head motion while achieving the best lip synchro-
nization, on par with V-Express. We highlight our model’s
ability to accurately animate non-speech vocalizations in
Figure 7, emphasizing our holistic approach to facial ani-
mation compared to existing methods that can only handle
speech. For a more comprehensive evaluation, we strongly
encourage readers to refer to the supplementary material.

Yawn Sigh Oh Mhm

Figure 7. Examples of different NSVs generated using KeyFace,
highlighting the model’s capability to handle non-speech audio.
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Figure 8. Results on out-of-distribution id using the same audio.
Please refer to our project page for additional video comparisons.

6. Conclusion

We introduce KeyFace, a two-stage diffusion-based frame-
work for generating long-duration, coherent, and natural
audio-driven facial animations. By leveraging an extended
temporal context through keyframe generation and inter-
polation, our method effectively preserves temporal coher-
ence and realism across long sequences. We further in-
crease the expressiveness of facial animations by condition-
ing on continuous emotions for long-term emotional con-
trol, and adding NSVs to our training set. Experimental
results demonstrate that KeyFace outperforms state-of-the-
art methods across a comprehensive set of objective met-
rics. Finally, we consolidate our findings via a series of
qualitative evaluations and prove that KeyFace successfully
addresses key challenges such as repetitive movements and
error accumulation, setting a new standard for natural and
expressive animations over long durations.
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KeyFace: Expressive Audio-Driven Facial Animation for Long Sequences via
KeyFrame Interpolation

Supplementary Material

A. Model Details

Implementation In our experiments, both the keyframe
generator and the interpolation model produce sequences of
14 frames. The keyframes are spaced by S = 12 frames,
and the interpolation model uses two frames as condition-
ing. Consequently, the total number of new frames gener-
ated through interpolation is S. This configuration captures
extended temporal dependencies while maintaining compu-
tational efficiency.

We initialize the weights of the U-Net and VAE from
SVD [3] and conduct all experiments on NVIDIA A100
GPUs with a batch size of 32 for both models. The
keyframe generator is trained for 60, 000 steps, while the in-
terpolation model requires 120, 000 steps due to its greater
deviation from the pre-trained SVD. We use the AdamW
optimizer [40] with a constant learning rate of 1 × 10−5,
following a 1, 000-step linear warm-up. For inference, we
use 10 steps, consistent with [4]. During training, the iden-
tity frame is randomly selected from each video clip.

Audio is sampled at 16, 000 Hz to align with the pre-
trained encoders (WavLM [8] and BEATs [9]), while video
frames are extracted at 25 fps and resized to 512 × 512
pixels. During training, the audio condition is randomly
dropped 20 % of the time, and the identity condition is
dropped 10 % of the time to strengthen the guidance effect.

We train the reduced model for autoguidance [32] with
16× fewer training steps. The default settings are summa-
rized in Table 8.

Parameter Value

Keyframe sequence length (T ) 14
Keyframe spacing (S) 12
Interpolation sequence length (S) 12
Keyframe training steps 60, 000
Interpolation training steps 120, 000
Training batch size 32
Optimizer AdamW
Learning rate 1× 10−5

Warm-up steps 1, 000
Inference steps 10
GPU used NVIDIA A100
Autoguidance [32] model training steps 120, 000 / 16= 7, 500
Audio condition drop rate for CFG [21] 20 %
Identity condition drop rate for CFG [21] 10 %

Table 8. Default model parameters and training configura-
tions.

Inference speed One limitation of our model is that it
does not yet support real-time generation. Nevertheless, our
two-stage approach is faster than competing diffusion-based
models, particularly because it allows batching, unlike au-
toregressive methods. We present an inference speed com-
parison (Table 9), measured in seconds per frame. Real-
time inference could potentially be achieved through distil-
lation methods (e.g., UFOGen), which we leave for future
work.

V-Express [59] Hallo [65] AniPortrait [63] EchoMimic [11] Keyface

3.36 1.9 0.44 0.76 0.26

Table 9. Seconds per frame comparison for baseline models.

B. Comparison with SVD
Our method builds upon Stable Video Diffusion (SVD) [3]
by introducing carefully designed architectural and task-
specific adaptations. These modifications distinctly set our
approach apart from prior work. We highlight the primary
differences below.

Audio Conditioning While SVD primarily conditions on
the initial frame to predict subsequent video frames, our
method extends this capability by conditioning on both an
identity frame and audio inputs to drive video generation.
To the best of our knowledge, we are the first to employ
conditioning based on outputs from two distinct audio en-
coders (WavLM [8] and BEATs [9], allowing simultaneous
processing of speech and non-speech audio.

Emotional Conditioning Unlike the original SVD archi-
tecture, our approach incorporates additional control over
emotional expression. We demonstrate that training emo-
tional models exclusively with pseudo-labels for valence
and arousal achieves robust and consistent performance.

Loss Functions SVD employs only the EDM loss [31].
In contrast, we use two additional pixel-space losses along
with a weighted loss that specifically targets the lower re-
gion of generated images.

Guidance Whereas SVD solely employs vanilla
classifier-free guidance (CFG) [21], we provide an in-
depth investigation into optimal guidance techniques



tailored specifically to each stage of our pipeline. We
found that, for the keyframe model, assigning different
CFG weights to identity and audio conditions leads to
better performance and improved robustness compared to
classical CFG. Additionally, since interpolation requires
greater flexibility in head movement, we employed autogu-
idance [32] to dynamically balance guidance, resulting in
enhanced overall video quality.

C. Datasets
C.1. Data details
Table 10 provides an overview of the datasets used in this
paper, detailing the number of speakers, videos, average
video duration, and total duration for each dataset. We use
a combination of publicly available datasets (HDTF [76],
CelebV-HQ [78], CelebV-Text [70]) and our own collected
data. As stated in the main paper, we use only HDTF and
the collected data for training our final model. Addition-
ally, we utilize reference frames from FEED [14] for some
qualitative results.

Dataset # Speakers # Videos Duration

Avg. (sec.) Total (hrs.)

HDTF [76] 264 318 139.08 12
CelebV-HQ [78] 3, 668 12, 000 4.00 13
CelebV-Text [70] 9, 109 75, 307 6.38 130
Collected data 824 4, 677 123.15 160
Collected data (NSV) 639 5, 701 18.94 30

Table 10. Overview of the datasets used in the study.

C.2. Preprocessing details
Even during our experimentation with alternative data
sources in the data ablation study, we aim to obtain the
highest-quality data possible. To achieve this, we propose a
data preprocessing pipeline with the following steps:
• Extract 25 fps video and 16 kHz mono audio.
• Discard low-quality videos based on a quality score com-

puted using HyperIQA [53].
• Detect and separate scenes using PySceneDetect.
• Remove clips without active speakers using Light-ASD

[39].
• Estimate landmarks and poses using face-alignment.
• Crop the video around the facial region across all frames.
Using this pipeline, we curate CelebV-HQ [78] and CelebV-
Text [70].

However, even after filtering the datasets, we found that
many samples contain editing effects and/or occlusions that
are not detected. Examples include visible hands, camera
movement, editing effects, and occlusions, which we found
occur in 20 % of videos even after our cleaning process, as
illustred in Figure 9. Since these artefacts don’t correlate

with speech, they can’t be replicated by the model, hinder-
ing performance as shown in Section 5.3.

Zoom effect Occlusions Transition effect

Figure 9. Illustration of bad examples in CelebV-HQ [78] and
CelebV-Text [70].

D. Evaluation metrics
D.1. LipScore
To evaluate the effectiveness of our proposed LipScore met-
ric compared to the traditional SyncNet metric, we con-
duct experiments introducing controlled temporal and spa-
tial perturbations to synchronized audio-visual data. The
goal is to observe how each metric responds to these per-
turbations and determine which better correlates with the
expected degradation in lip synchronization quality.

Temporal misalignment sensitivity In the first set of ex-
periments, we introduce temporal misalignments by shift-
ing the ground truth video temporally. The time shifts range
from 0 milliseconds (ms) to 1000 ms.

Figure 10 illustrates the behavior of SyncNet Confidence
and SyncNet Distance as functions of the time shift. We
observe that SyncNet Confidence and Distance remain con-
stant up to approximately 400 ms and only start to change
significantly beyond this point. This behavior is unde-
sirable, as even small misalignments (e.g., 100–200 ms)
should result in a noticeable decrease in confidence and an
increase in distance.
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Figure 10. SyncNet Confidence and SyncNet Distance as func-
tions of time shift (ms).

In contrast, Figure 11 shows the LipScore metric’s re-
sponse to the same range of time shifts. LipScore exhibits a

https://github.com/Breakthrough/PySceneDetect
https://github.com/1adrianb/face-alignment


stable and consistent decrease in score as the time shift in-
creases. It begins to penalize even small temporal perturba-
tions, with a sharp decline at smaller offsets, and stabilizes
at lower scores as larger misalignments are introduced. This
behavior aligns with the expected characteristics of a robust
lip synchronization metric, demonstrating continuous sen-
sitivity to temporal misalignments without erratic or overly
abrupt changes.
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Figure 11. LipScore as a function of time shift (ms).

Robustness to spatial perturbations We evaluate the ro-
bustness of the metrics to spatial transformations by intro-
ducing horizontal shifts and rotations to the video frames.

Figure 12 illustrates the percentage deviation from the
initial metric values as horizontal shifts increase. Lip-
Score remains stable, exhibiting minimal deviation across
the range of horizontal shifts, indicating its robustness to
this type of spatial perturbation. In contrast, SyncNet Con-
fidence and SyncNet Distance show significant deviations
starting at a shift of 75 pixels, highlighting their sensitivity
to horizontal displacements.
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Figure 12. Effect of horizontal shifts on LipScore, SyncNet Con-
fidence, and SyncNet Distance. The plot shows the percentage
deviation from the initial value as the horizontal shift increases.

Similarly, Figure 13 shows the percentage deviation in

metric values as the rotation angle of the video frames
increases. LipScore again demonstrates robustness, with
negligible changes in its values even as the rotation angle
grows. In contrast, SyncNet Confidence and SyncNet Dis-
tance exhibit substantial deviations starting at 20 degrees,
indicating that these metrics are more adversely affected by
rotational transformations.
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Figure 13. Effect of rotation angles on LipScore, SyncNet Con-
fidence, and SyncNet Distance. The plot shows the percentage
deviation from the initial value as the rotation angle increases.

WER on unseen datasets We additionally evaluate our
state-of-the-art lipreader [41] on HDTF and find that it
achieves a 21 % WER, demonstrating strong performance
on unseen data and further supporting LipScore’s validity.

D.2. Non-speech vocalization classifier
We introduce the Non-Speech Vocalization (NSV) Classi-
fier as part of our evaluation methodology. This not only
highlights the limitations of pre-trained speech-driven an-
imation methods but also demonstrates the capabilities of
our model in generating realistic NSV sequences. The
model processes video inputs and classifies them into one
of eight NSV types, plus speech.

Architecture The architecture of the system is presented
in Fig. 14. We employ a Multiscale Vision Transformer
(MViTv2) [37] backbone, augmented with two linear lay-
ers and a dropout layer with a dropout probability set
to 0.2. The MViTv2 model, pre-trained on the Kinetics
dataset [33], achieves a top-5 accuracy of 94.7 %.

Training Our model is trained using a dataset contain-
ing video clips of eight different NSV types and speech.
The eight NSV classes are: ”Mhm”, ”Oh”, ”Ah”, coughs,
sighs, yawns, throat clears, and laughter. During the
training process, video clips corresponding to any of these
classes are fed into the model. We train using the AdamW



Figure 14. The architecture used for the Non-Speech Vocalization
Classifier. The batch size is denoted as B.

optimizer with a learning rate of 1 × 10−4, β1 = 0.9, and
β2 = 0.999. The cross-entropy loss is employed as the loss
function.

Our model achieves an F1 score of 0.7 across these nine
classes, demonstrating its effectiveness in classifying vari-
ous NSVs and speech.

NSVs performance boundaries To demonstrate and un-
derstand the effectiveness of NSVacc across individual
NSVs, we present a confusion matrix on the validation set
of the data used to train NSVacc (Fig.15, left). Although the
model achieves good overall performance, certain NSVs are
frequently confused, such as “Oh” with “Ah,” “Sigh” with
“Mhm,” and “Yawn” with “Cough.”

Additionally, we demonstrate that our model can gen-
erate visually distinct NSVs (Fig.15, right) with few con-
fusions by generating 10 videos per NSV category and
speech.
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Figure 15. NSV confusion matrix for generated (left) and valida-
tion (right) videos.

E. User study details
To evaluate the performance of our proposed method, Key-
Face, against existing baselines, we conduct a comprehen-

sive user study. Participants view pairs of talking face
videos and select the one they find more realistic. This sec-
tion summarizes the results of the pairwise comparisons and
the derived metrics.

Pairwise Win Rates: The pairwise win rate matrix is pre-
sented in Figure 16. Each cell represents the proportion of
times the reference model (rows) is preferred over the com-
peting model (columns). Green indicates a high win rate
for the reference model, while red represents a lower win
rate. KeyFace is consistently preferred over baseline mod-
els, achieving a win rate of at least 64 % against all other
methods.
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Figure 16. Pairwise win rates between reference (rows) and com-
peting models (columns). Green indicates higher, Red lower win
rates.

Elo ratings: Figure 17 presents the Elo ratings for all
models with 95 % confidence intervals. KeyFace achieves
the highest Elo rating, significantly outperforming the base-
lines, demonstrating its effectiveness in generating high-
quality talking face animations.
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Figure 17. Elo ratings for all models with 95 % confidence inter-
vals. Higher ratings indicate better overall performance.



Elo rating distributions: The density distributions of Elo
ratings are shown in Figure 18. KeyFace exhibits a sharp,
high-density peak at the upper end, highlighting its robust-
ness and consistent user preference across evaluation sce-
narios. Echomimic, V-Express, and Hallo show significant
overlap in their results, while Aniportrait and SadTalker
consistently receive lower ratings.
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Figure 18. Density distributions of Elo ratings for all models.
Peaks indicate the most probable performance levels, with higher
ratings reflecting better performance.

F. Additional ablation

Method FID ↓ FVD ↓ LipScore ↑
w/o cross attention 16.95 167.39 0.35
w/o timestep 17.20 176.83 0.28
cross attention + timestep 16.76 137.25 0.36

Table 11. Audio conditioning ablation on HDTF [76]: “Cross
attention” refers to incorporating audio through a cross-attention
mechanism, while “timestep” refers to adding the audio embed-
dings to the timestep embeddings. The best results are highlighted
in bold and default settings are highlighted in gray on all tables.

Audio mechanisms Table 11 presents an ablation study
on the impact of different audio conditioning mechanisms
on video generation quality. The results show that the audio
timestep plays a critical role in achieving accurate lip syn-
chronization, as removing it (row “w/o timestep”) results
in the lowest LipScore and the highest FVD. Adding cross
attention alone improves video quality but only marginally
enhances the LipScore compared to when the timestep is
absent. The best performance is achieved when both cross
attention and audio timestep embeddings are used together,
leading to the lowest FID, significantly lower FVD, and the
highest LipScore. This indicates that while audio timestep
embeddings are essential for achieving good lip synchro-
nization, the addition of cross attention further enhances the
overall quality of the generated videos by improving visual
coherence and temporal consistency.

Training on HDTF only To ensure a fair comparison
with baseline models, we retrain our model exclusively on
publicly available data (i.e. HDTF [76]), removing all non-
public sources. Although this leads to a decrease in per-
formance, our model still outperforms baseline methods
trained on larger datasets. We emphasize that most exist-
ing methods rely on private datasets; therefore, to maintain
fairness, we curated our dataset to have comparable scale in
terms of total hours and number of speakers as described in
Section C.1.

Method FID ↓ FVD ↓ LipScore ↑
KeyFace (HDTF only) 19.49 165.06 0.28

Table 12. Results of pipeline trained on HDTF only.

G. Limitations
One key limitation of our model, which it shares with all
baseline methods, is its performance when the initial frame
exhibits an extreme head pose. This issue primarily stems
from the lack of training data containing such extreme
poses, resulting in difficulties in reconstructing the occluded
or unseen parts of the face. As illustrated in Figure 19, al-
though the model can generate plausible videos with accu-
rate lip synchronization, it partially loses the identity of the
reference image in these scenarios. Additional failure cases
involving challenging reference frames are provided in the
supplementary videos.

Reference image Video sequence

Figure 19. An example showcasing KeyFace’s limitations in han-
dling extreme head poses.

H. Additional qualitative results
To further demonstrate the effectiveness of our method, we
provide example videos generated by KeyFace (as well as
competing methods, for comparison) in the supplementary
material:
• Non-speech vocalizations comparison. We evaluate the

model’s ability to handle eight distinct NSVs and com-
pare its performance with baseline methods, highlighting
the limitations of current state-of-the-art models and the
strengths of our approach. For a fair comparison, all ex-
amples maintain a neutral emotional tone.

• Speech and NSV comparison. We demonstrate the
model’s capability to generate both speech and NSVs



within the same video, comparing its performance to
other approaches. The results showcase the holistic na-
ture of our method, particularly in contrast to baseline
models. We maintain a neutral emotional tone for con-
sistency.

• Side-by-side comparison. We present side-by-side com-
parisons between KeyFace and baseline models, show-
casing KeyFace’s superior performance in generating re-
alistic and expressive facial animations.

• Emotion interpolation. We showcase transitions
between different emotional states, emphasizing the
model’s ability to capture subtle and nuanced expressions.

• Out-of-distribution robustness. Figure 20 illustrates the
model’s robustness in handling non-human faces, demon-
strating successful generalization to a variety of input
conditions.

• Expanded KeyFace examples. We provide additional
videos featuring KeyFace-generated animations in En-
glish and other languages, highlighting the model’s gener-
alization capabilities across different linguistic contexts.

Reference image Video Sequence

Figure 20. We present a set of examples with out-of-distribution
reference frames.
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